Using the GVC emotion recognition software
Good Vibrations Company B.V.
October 18, 2015

This document describes how you can incorporate the GVC emotion recognition (GVCemo) software into
your own apps.

Contents
1. Overview 3

2. How to incorporate GVCemo in your software project
2.1. Target platforms oL e e
2.2. Integrating GVCemo files into an i0S, Windows, Mac or Linux app

U

2.3. Integrating GVCemo files into a Python project

3. GVCemo functionality
3.1. Creating your channel(s) e
3.1.1. Sampling frequency e e e
3.1.2. A mono recording: one channel L Lo L L
3.1.3. A stereo recording: two channels oL L L
3.1.4. Multiple simultaneous sources of recordings
3.1.5. Theresult o o e e e e
3.1.6. Restrictions on the sampling frequency 0.
3.1.7. Error messageso .o u e e e e e e e e e e e e e e e e
3.2. Feeding samples to a channel L L
3.2.1. Samples e
3.2.2. The number of samples tofeed o o L
3.23. Theresult o e

3.2.4. EITOr MESSAZES .« .« ¢ v v i i e e e e e e e e e e e e e e e e

© O © 00 0 g N g 9 9 o o o o o

3.3. Getting emotion levels from a channel L L Lo

3.3.1. The emotion format e e 10

3.4. Resetting a channel e 11

3.5. Deleting all channels 0 e 11

. Example code in C

4.1. A full example in C: the happy sweep
4.2. Batch mode: one channel
4.3. Batch mode: two channels

4.4. Real-time mode

. Python binding

5.1 Example: analyzing a sweep

5.2 Example: analyzing the happiness in a WAV file
. Java binding
. R binding

. Licencing

12
12
13
13
13

15
17
18

19

19

19

1. Overview

As an app builder, you use the GVCemo library in a very straightforward manner, illustrated here with an
overview of the C API:

// First create one or more channels...

GVCemoChannel GVCemoChannel create (// e.g. call this twice for a stereo recording
double samplingFrequency; // e.g. 8000 Hz (telephone) or 44100 Hz (CD quality)
)5

// ...then feed the channel(s) some audio samples from a file, microphone or telephone. ..

void GVCemoChannel feed (

GVCemoChannel channel, // a channel you created before

int numberOfSamples, // the length of (a part of) your recording

double samples []; // e.g. the microphone signal as coming from your sound card
);
// ...then analyze the emotions in the recorded human votice.

void GVCemoChannel_analyze (
GVCemoChannel channel, // a channel you created before
int emotionFormat, // a choice between log odds, odds, probability and percentage
GVCemoQOutput *output // the analysis results, as defined below

)3

// You receive the emotion levels in the following structure:

typedef struct {
int numberOfValidFrames; // reports how much of the recording contains human voice
int numberOfFramesLost; // will be zero if you call ‘analyze often enough
double happylevel; // e.g. a percentage between 0 (very sad) and 100 (very happy)
double relaxedLevel; // e.g. a percentage between O (stressed) and 100 (relazed)
double angryLevel;
double scaredLevel;
double boredLevel;

} GVCemoOutput;

This is basically all there is to analyzing emotions with GVCemo. Besides the C API, which you can
access from all C-related programming languages, we also provide bindings for Python, R and Java. The
administrative effort for you as a programmer consists of no more than including a single header file and
linking with a single library file. We provide library files for many versions of Windows, i0S, MacOS X, and
Linux.

This document describes the functionality of the API in detail, and provides examples of how to call the
API on any platform, from any of the programming languages, and in batch applications as well as in
multithreaded real-time applications.

2. How to incorporate GVCemo in your software project

Basically, incorporating GVCemo in your project involves including one header file (in C-like languages) or
one module definition (in Python) into your source code, and linking one machine-code library into your
executable statically (for C-like languages) or at run time (for Python, Java or R).

2.1. Target platforms

You will probably build your app on a modern computer. However, you may want to deploy (distribute) your
app to users who have much older computers. It is therefore important to know that the GVCemo software
is thought to be able to run on the oldest and newest iPhones, the oldest and newest Macs with MacOSX, on
Windows computers with any operating system between XP and 10, and on many Linux versions. Although
there is no guarantee that the algorithm is fast enough for real-time applications on the oldest 32-bit hardware,
GVC believes that you can get batch applications to work on all those computers.

More specifically, GVC provides:

o 108 static (.a) libraries for iPhone and iPad apps:

— 32-bit: for iOS 1.0 and later on hardware from iPhone 1 (2007-)
— 64-bit: for i0S 1.0 and later on hardware from iPhone 5S (2013-)

« Windows object (.0) files for Windows applications:

— 32-bit: for XP and later (2001-)
— 64-bit: for Vista and later on 64-bit hardware (2007-)

o Windows dynamic (.dll) libraries for Python/Java/R:

— 32-bit: for XP and later (2001-)
— 64-bit: for Vista and later on 64-bit hardware (2007-)

o MacOSX object (.0) files and static (.a) libraries for MacOSX apps:

— 32-bit: for MacOSX 10.0 and later (2001-)
— 64-bit: for MacOSX 10.6.8 and later on 64-bit hardware (2010-)

o MacOSX dynamic (.so) libraries for Python/Java/R:

— 32-bit: for MacOSX 10.6 and later (2009-)
— 64-bit: for MacOSX 10.6.8 and later on 64-bit hardware (2010-)

o Linux object (.0) files and static (.a) libraries (32-bit and 64-bit)
o Linux dynamic (.so) libraries for Python/Java/R (32-bit and 64-bit)

2.2. Integrating GVCemo files into an iOS, Windows, Mac or Linux app

If you program in a C-like language (C, C++, Objective C, Objective C++ or C#), you include the GVCemo
software in your source code by #including the header file GVCemo.h.

To include the GVCemo algorithm in your executable, you link with a GVCemo object file or with a GVCemo
archive of object files. We will now describe how this works for four major target platforms.

For iOS (iPhone and iPad) apps, the easiest way to proceed is to drag both the header file GVCemo.h
and the machine-code archive 1ibGVCemo_iphone.a into the file list of your Xcode project. The archive
1ibGVCemo_iphone.a contains GVCemo machine code for all iPhone and iPad versions, as well as for the
iPhone and iPad simulators in Xcode. The archive is composed of the following six object files:

e GVCemo_ios_armv6.o, for ARMv-6 processors, i.e. for iPhone 1 to 3 (2007-2009)

o GVCemo_ios_armv7.o, for ARMv-7 processors, e.g. for iPhone 3GS to 5 (2009-2012)

o GVCemo_ios_armv7s.o, for ARMv-T7s processors, i.e. for iPhone 5 (2012-2013)

e GVCemo_ios_arm64.o, for 64-bit ARM processors, i.e. for iPhone 5S and up (from 2013)
e GVCemo_isimu_i686.0, for your 32-bit iPhone Simulator

e GVCemo_isimu_x86_64.0, for your 64-bit iPhone Simulator

These six object files are also available separately, in case you want to make your app available to a smaller
number of processors and don’t like to include the superflous object files in your project.

For Windows apps, you include in your project the header file GVCemo.h as well as one of the following
object files:

e GVCemo_win32.o, for i686 (32-bit) processors (1997-)
o GVCemo_win64.o, for x86-64/x64/AMD64 (64-bit) processors (2003-)

For MacOS X apps, you include in your project GVCemo.h as well as one of the following object files:

e GVCemo_mac32.o0, for i686 (32-bit) processors, from OSX 10.6 (2009) on
o GVCemo_mac64. o, for x86-64/x64/AMDG64 (64-bit) processors, from OSX 10.6.8 (2010) on

For Linux apps, you include in your project GVCemo.h as well as one of the following object files:

o GVCemo_linux32.o, for i686 (32-bit) processors
o GVCemo_linux64.o, for x86-64/x64/AMDG64 (64-bit) processors

As GVCemo is not open source code, the usual Linux strategy of distributing a complete source-code edition
of your application will not be possible.

2.3. Integrating GVCemo files into a Python project
If you program in Python, you import the GVCemo software in your source code by importing the module

gvcemo.py. To use the GVCemo algorithm at run time, you open a GVCemo dynamic library from your
source code. We provide one or two dynamic libraries for each of the three major desktop platforms.

On Windows, you open at run time one of the following dynamic libraries, depending on whether you are
running 32-bit or 64-bit Python:

o 1ibGVCemo_win32.d11, for i686 (32-bit) processors
o 1ibGVCemo_win64.d11, for x86-64/x64/AMD64 (64-bit) processors

On MacOS X, you open at run time the following dynamic library:
e 1ibGVCemo_mac.so, for 64-bit processors

On Linux, you open at run time one of the following dynamic libraries, depending on whether you are
running 32-bit or 64-bit Linux:

e 1ibGVCemo_linux32.so, for i686 (32-bit) processors
e 1ibGVCemo_linux64.so, for x86-64/x64/AMDG64 (64-bit) processors

We support Python 2.7 as well as Python 3.4. More details, as well as example code, are given in chapter 5.

3. GVCemo functionality

This chapter outlines the semantics and behavior of the GVCemo functions. Although this chapter employs
the C syntax of these functions, the information in this chapter is also relevant for programmers who employ
Python, Java or R.

The prototypes for the GVCemo functions are in GVCemo.h. It is assumed that an int is a 32-bits two’s
complement signed integer, a double is a 64-bit IEEE floating-point number, the byte order is the “native”
one, and the alignment of elements within structs and parameter lists is the “natural” one for C on the
machine where the software will run.

3.1. Creating your channel(s)

When your GVCemo-app starts up, the GVCemo module knows of no audio channels yet. Fortunately,
you can create a channel for your recording, namely with the function GVCemoChannel_create(), whose
prototype is given in GVCemo.h:

GVCemoChannel GVCemoChannel create (
double samplingFrequency;

)

3.1.1. Sampling frequency

In the call to GVCemoChannel _create(), you tell the channel what its incoming samples will mean. In other
words, you will have to tell the channel what its sampling frequency is.

The sampling frequency, or sample rate, of an audio recording is how often the sound is “sampled” every
second, i.e. how many samples are drawn in a second from the sound pressure as measured by the microphone.

The sampling frequency of the tracks on a CD is 44100.0 Hz, i.e., the sound is represented with 44100 stereo
samples per second. Most recording devices support 44100 Hz as well, and some recording devices (such as
the built-in sound card on a Mac) support only 44100 Hz. Telephone recordings typically have a sampling
frequency of only 8000.0 Hz.

3.1.2. A mono recording: one channel
To create a channel for a mono recording in GVCemo with a sampling frequency of 44100 Hz, you would do

GVCemoChannel channel = GVCemoChannel create (44100.0);

3.1.3. A stereo recording: two channels
To create channels for a stereo recording, you could do

GVCemoChannel left = GVCemoChannel _create (44100.0);
GVCemoChannel right = GVCemoChannel _create (44100.0);

You can create any number of channels, limited only by the available memory on the computer.

3.1.4. Multiple simultaneous sources of recordings

If you have recordings of a telephone conversation, with one speaker in the outgoing stream and the other
speaker in the incoming stream, you do

GVCemoChannel outgoing = GVCemoChannel_create (44100.0);
GVCemoChannel incoming = GVCemoChannel create (44100.0);

just as with stereo recordings.

3.1.5. The result

After you call GVCemoChannel_create(), your channel will have been fully initialized. This means that for
each channel a 5-second ring buffer has been created for the samples that you are going to feed to your
channel with GVCemoChannel_feed(), as described in §3.2. Typically (i.e. for a sampling frequency of 44100
Hz), this buffer takes up 2 megabytes of heap memory.

3.1.6. Restrictions on the sampling frequency

Currently, GVCemo accepts sampling frequencies between 8000.0 and 48000.0 Hz. If you need a different
sampling frequency, contact your representative at GVC.

3.1.7. Error messages

You can make GVCemoChannel_create() fail by creating an extremely large number of channels:
GVCemoChannel channels [100000] ;

for (int i = 0; i < 100000; i ++)
channels [i] = GVCemoChannel create (44100.0);

This may print
Out of memory when trying to create a channel.

because you are trying to allocate 200 gigabytes to GVCemo.

You can also make GVCemoChannel_create() fail by asking for an unsupported sampling frequency:

GVCemoChannel channel = GVCemoChannel create (192000.0);

This will print

A sampling frequency of 192000.000000 Hz is not supported.
GVCemo accepts only sampling frequencies between 8000 and 48000 Hz.

3.2. Feeding samples to a channel

After you have created your channel with GVCemoChannel_create (), you are ready to feed samples to it. In
other words, you are ready to give your channel an array of double values that represent the sound pressure
at the microphone as a function of time. You do this with the function GVCemoChannel_feed (), whose
prototype is given in GVCemo.h:

void GVCemoChannel_ feed (
GVCemoChannel channel,
int numberOfSamples,
double samples [];

)

3.2.1. Samples

For each second of your recording, you typically have been given 44100 samples (if the sampling frequency
was 44100 Hz). These values could have come directly from the microphone in your app (for a real-time
recording), or from two telephone streams (incoming and outgoing), or from a sound (e.g. WAV) file on disk.

In all cases, GVCemo expects that your samples have been scaled to values between -1 and +1. That is, if your
sound file gives you potential values between -32768 and +32767 (which corresponds to 16-bit quantization),
then you divide the raw sample values by 32768 before feeding them to a GVCemoChannel.

You specify the samples to a GVCemoChannel in the array samples.

3.2.2. The number of samples to feed

The value of the argument numberOfSamples depends on the number of samples that you want to feed to
GVCemo at a time. If you want to feed the channel called channel with approximately 40 milliseconds of
samples, and your sampling frequency is 44100 Hz, then you can specify 176 samples:

GVCemoChannel _feed (channel, 176, samples);

In this case, the argument samples should be an array that contains 176 samples, with elements numbered
samples[0] through samples[175].

If you want to feed the right channel (called right) with 2.0 seconds of samples, with a sampling frequency
of 44100 Hz, then you do

GVCemoChannel_feed (right, 88200, samples);

where samples [0] through samples[88199] are valid sample values.

As you see from these examples, the number of samples can vary quite a bit. Typically, you follow each
call to GVCemoChannel _feed() with a call to GVCemoChannel_analyze (), which processes and analyzes the
samples you have just fed (see §3.3). This means that the number of samples you feed to GVCemo typically
corresponds to the granularity with which you want to retrieve emotion levels:

e If you have a real-time app that visualizes the current emotion level of the speaker, you probably want
to update the visualization every 40 milliseconds or so. GVC advises you not to go below below 30
milliseconds or so, as the number of “frames” evaluated (see §3.3) will vary too much for such low
analysis time steps.

e If you have an app that wants to measure average emotion levels during parts of long pre-recorded
sounds, you want to feed as many samples at a time as possible. The maximum duration of sound
that you can feed, however, is 3.0 seconds, because the ring buffer is 5.0 seconds long and GVCemo
requires a history of 2.0 seconds to be available to it at any time. This means that if your sampling
frequency is 44100 Hz, the maximum number of samples you will want to feed to a GVCemo channel
with GVCemoChannel_feed () is 132300. If you need to average over e.g. 60 seconds, you can retrieve
20 emotion levels over 3 seconds each, and average those yourself.

These points are further illustrated in the examples of chapter 4.

3.2.3. The result

After you call GVCemoChannel_feed (), the ring buffer in your channel will have been updated with a number
of new samples. The buffer will also have forgotten the same number of the oldest (i.e. more than 5 seconds old)
samples. With these new samples, you are now ready to analyze emotions with GVCemoChannel _analyze(),
as described in §3.3.

3.2.4. Error messages

You cannot make GVCemoChannel feed() fail. With a valid GVCemoChannel and sample array,
GVCemoChannel_feed(), or a sequence of calls to GVCemoChannel_feed(), is happy to feed any number of
samples to the ring buffer, even if that buffer overflows.

For instance, if the buffer is 5 seconds long and therefore has room for 220500 samples, you can still feed a
million samples to it with (a sequence of calls to) GVCemoChannel_feed (). After GVCemoChannel_feed()
has written the first 220500 samples to the buffer, the following samples that GVCemoChannel feed () writes
to the buffer will start to overwrite some samples that are 5 seconds older. In the end, this means that
779500 samples will have been written but overwritten, so that 779500 samples will be lost forever and will
never be analyzed. Still, it is not GVCemoChannel_feed () but GVCemoChannel_analyze() who will detect
this overflow.

The reason is that in real-time applications, GVCemoChannel_feed () will usually be called at lock time. In
a real-time application you typically have to work with two separate threads: one that does the recording
and one that does the analysis. For instance, the recording thread could give you repeatedly 64 samples in
a callback directly from the sound card, whereas the emotion analysis is performed every 40 milliseconds
(i.e. 1764 samples) in a timer that runs in the main thread. This means that the callback should write 64
samples to your special intermediary buffer, and GVCemoChannel_feed () should move 1764 samples from that
intermediary buffer to GVCemo, followed by calling GVCemoChannel_analyze (). The crucial point, now, is
that the intermediary buffer is used by two threads, but that only one thread at a time should have access to it.
Therefore, the callback should set a lock immediately before writing the 64 samples to the intermediary buffer,
and release the lock immediately after it, and the timer function should set a lock immediately before calling
GVCemoChannel_feed() and release the lock immediately after GVCemoChannel feed() returns. Thus, to
minimize the time during which you have to make the intermediary buffer unavailable to the recording thread,
GVCemoChannel_feed() needs to be a very fast function that just copies samples from the intermediary
buffer to GVCemoChannel’s internal ring buffer, and certainly does not write error messages. For an example
see §4.4.

3.3. Getting emotion levels from a channel

After you have fed samples to a channel, you are ready to analyze them. You do this with the function
GVCemoChannel_analyze (), whose prototype is given in GVCemo.h:

typedef struct {
int number(OfValidFrames;
int numberOfFramesLost;
double happyLevel;
double relaxedLevel;
double angryLevel;
double scaredLevel;
double boredLevel;

} GVCemoOutput;

void GVCemoChannel_analyze (

GVCemoChannel channel,

int emotionFormat,

GVCemoOutput *output
);

3.3.1. The emotion format

You will retrieve emotion values in the fields happyLevel, relaxedLevel, angryLevel, scaredLevel, and
boredLevel of the output structure. The interpretation of these values depends on the emotionFormat that
you specify.

If you specify an emotionFormat of 1 (or less), the five emotion values in output will represent log odds,
i.e. logarithms of odds. These are values between minus and plus infinity. For happyLevel, for instance, a
value of —oo denotes maximal sadness and a value of +0o denotes maximal happiness, with a value of 0 being
neutral. Log odds are known from logistic regression, and they are the format of choice if you need to average
multiple measurements, or compare a person’s emotion today with that same person’s emotion tomorrow.

If you specify an emotionFormat of 2, the five emotion values in output will represent odds. For instance,
if emotionFormat is 2 and the resulting happyLevel is 3.0, this means that the odds are 3.0 to 1 that the
person is happy rather than sad (i.e. there is a 75% chance that the person is happy, and a 25% chance that
the person is sad). You could easily compute the odds from the log odds as follows:

odds = elogodds

but if you specify an emotionFormat of 2, GVCemo performs this computation for you.

If you specify an emotionFormat of 3, the five emotion values in output will represent probabilities. For
instance, if emotionFormat is 3 and the resulting happyLevel is 0.75, the probability of the person being
happy is 0.75 and the probability of the person being sad is 0.25. You could compute the probabilities from
the odds as follows:

odds

bability = ——"
Provavtiity = 1 odds

but if you specify an emotionFormat of 3, GVCemo performs this computation for you.

If you specify an emotionFormat of 4, the five emotion values in output will represent percentages. For
instance, if emotionFormat is 4 and the resulting happyLevel is 75, the person is 75 percent happy and 25
percent sad. You could compute the percentages from the probabilities as follows:

percentage = 100 X probability

but if you specify an emotionFormat of 4, GVCemo performs this computation for you.

3.3.2. Are we measuring chances or degrees?
You may have noticed in §3.3.1 that we regarded as equivalent the following two statements:

 the person has a probability of 75% of being happy and of 25% of being sad
o the person is 75% happy and 25% sad

These two statements do not mean the same thing in real life, but our algorithm does not distinguish between

them, i.e. the reported emotion levels are ambiguous as to whether they refer to chances or to degrees. Here’s
another statement that our algorithm regards as equivalent, though it may not be in real life:

10

e on a scale from 0 to 100, the happiness of the person is 75

Perhaps the future will bring algorithms that can distinguish between these three interpretations of emotion
levels, but that time has not come yet. Until then, the algorithms estimate either the probability that a
certain emotion is present, or the degree to which that emotion is present, or any combination of the two.

3.3.3. Valid frames

In the output structure you will find a field numberOfValidFrames. This refers to the number of “frames”
that the emotion analysis was based on. If this is 0, the reported emotion levels are invalid (in fact, they
receive the value —2 - 103%Y). Therefore, you can use the reported emotion values only if the reported number
of valid frames is 1 or more.

3.3.4. Lost frames

If you call GVCemoChannel_analyze often enough, i.e. more than once every 3 seconds, the output field
numberOfFramesLost will be 0. A value larger than 0 means that analysis frames were lost, i.e., that not
all of the samples fed have been analyzed. This is a situation of buffer overflow. If this occurs too often in
your application, and you want to analyze all samples, you should make sure that GVCemoChannel_analyze
is called more often, e.g., that is called for every second of speech or so.

3.4. Resetting a channel

If you want to forget all samples that you have fed to a channel, you can call GVCemoChannel_reset (), whose
prototype is in GVCemo . h:

void GVCemoChannel reset (
GVCemoChannel channel

)

You can use this function if you want to analyze multiple recordings of which you know that they have the
same sampling frequency, or if you want to analyze multiple disconnected parts of a single recording. Calling
GVCemoChannel_reset in between the analyses ensures that your new emotion measurement is not influenced
by whatever samples remain in the channel’s ring buffer from an unrelated recording.

3.5. Deleting all channels

When your app finishes working on emotion analysis, you can reclaim all the memory that GVCemo uses by
calling GVCemoChannel_delete() on your channel(s). The prototype is given in GVCemo.h:

void GVCemoChannel_delete (GVCemoChannel channel);

So if you analyzed a two-way conversation, you can do:

GVCemoChannel_delete (incoming);
GVCemoChannel_delete (outgoing);

This releases the memory used by both channels.

A clean-up with GVCemoChannel_delete() is not necessary in most C-like apps, because they release all
memory at shut-down anyway. The clean-up may become more important, though, if you run GVCemo from
another programming language such as Python (see chapter 5), Java (chapter 6) or R (chapter 7).

11

4. Example code in C

You can use the API both in batch mode and in real-time mode. In this chapter we give examples of both.

4.1. A full example in C: the happy sweep

The following example program computes the “emotion” in a computer-geenrated sine wave that starts with
a pitch of 100 Hz and linearly moves to a pitch of 300 Hz within 20 seconds.

/* happy_sweep.c */
/* Computes the development of the "happiness" in a sine sweep. */

#include <math.h>

#include <stdio.h>

#include <stdlib.h>

#include "../API/GVCemo.h" // or wherever you put the header file

int main (int argc, char **argv) {
double samplingFrequency = 44100.0;
GVCemoChannel channel = GVCemoChannel_create (samplingFrequency) ;

/*
* Create a rising sweep.
*/
double duration = 20.0; // Seconds
int numberOfSamples = (int) (duration * samplingFrequency);
double *samples = malloc (sizeof (double) * numberOfSamples);

for (int i = 0; i < numberOfSamples; i ++) {
double time = i / samplingFrequency;
// the local frequency is 100 + time * 10, i.e. it Tises from 100 to 300 Hz
samples [i] = sin (2.0 * M_PI * (100+timex*5.0) * time);

}

/*
* Compute and report the happiness level at multiple points in time. It should rise.
*/

printf ("Happiness: Valid frames: Frames lost:\n");

double *slice = & samples [0];
double duration0fSlice = 2.0; // Seconds
int numberOfSamplesPerSlice = (int) (durationOfSlice * samplingFrequency);
for (int islice = 0; islice < 10; islice ++) {
GVCemoChannel feed (channel, numberOfSamplesPerSlice, slice);
slice += numberOfSamplesPerSlice;
GVCemoOutput output;
GVCemoChannel_analyze (channel, 4, & output); // Percentages
printf ("%.3f %d %d\n", output.happyLevel,
output.number0fValidFrames, output.numberOfFramesLost);

12

4.2. Batch mode: one channel

If you have 1000000 samples, and you want to extract happiness every 2000 samples, you can obtain a
sequence of 500 emotion values between 0.0 and 1.0 in the following way:

GVCemoChannel channel = GVCemoChannel create (44100.0);
double buffer [1000000];
// fill the buffer with speech, perhaps from a sound file
GVCemoQOutput emotions [500];
for (int step = 1; step <= 500; step ++) {
GVCemoChannel feed (
channel, // the only channel
2000,
buffer + (step-1) * 2000
)s
GVCemoChannel_analyze (
channel, // the only channel
3, // probability
& emotions [step - 1]

)

4.3. Batch mode: two channels

GVCemoChannel incoming = GVCemoChannel_create (44100.0);
GVCemoChannel outgoing = GVCemoChannel_create (44100.0);
double bufferl [1000000], buffer2 [1000000];
// fill the buffers with speech, perhaps from the left and right channel of a sound file
GVCemoQOutput emotionsl [500], emotions2 [500];
for (int step = 1; step <= 500; step ++) {
GVCemoChannel_feed (incoming, 2000, bufferl + (step-1) * 2000);
GVCemoChannel_feed (outgoing, 2000, buffer2 + (step-1) * 2000);
GVCemoChannel_analyze (incoming, 3, & emotionsl [step - 11);
GVCemoChannel_analyze (outgoing, 3, & emotions2 [step - 1]);

4.4. Real-time mode

If you have a continuous stream of input samples, you can make use of the fact that ‘collectingBuffer’ is a
ring buffer, i.e. ‘totalNumberOfCollectedSamples’ can be greater than ‘collectingBuffer’ and the last sample
collected is found at collectingBuffer [totalNumberOfCollectedSamples % collectingBufferSize]. Make sure
that the buffer is at least 5 seconds long, i.e. collectingBufferSize should be at least 220500.

In iOS, we need two different threads:

GVCemoChannel channel = GVCemoChannel create (44100.0);
static NSLock *thelLock = [[NSLock alloc] init];
static struct {
double buffer [132300]; // a 3-second buffer in the recording thread
int32_t numberOfSamplesCollected; // starts at O
} intermediary; // apply theLock whenever you access any member of this structure

13

static 0SStatus recordingCallback (// set with AudioUnitSetProperty(...,

}

// kAudioUnitProperty_SetRenderCallback, kAudioUnitScope_Input...)
void *inRefCon,
AudioUnitRenderActionFlags *ioActionFlags,
const AudioTimeStamp *inTimeStamp,
UInt32 inBusNumber,
UInt32 inNumberFrames,
AudioBufferList *ioData)

AudioUnit audioUnit = (AudioUnit) inRefCon;
AudioUnitRender (audioUnit, ioActionFlags, inTimeStamp, 1, inNumberFrames, ioData);
SInt32 *data = (SInt32 *) (ioData -> mBuffers [0]. mData); // O is the channel number
[theLock lock];
// we enter a section that is guarded by the lock because “intermediary” is accessed
for (int i = 0; i < inNumberFrames; i ++) {

float value = data [i] / (float) (1 << 24); // if the data is in fixed 8.24 format

intermediary.buffer [intermediary.numberOfSamplesCollected + i] = value;

// intermediary is guarded by the lock

}
intermediary.numberOfSamplesCollected += inNumberFrames;
// we no longer need to access “intermediary : leave the locked section immediately
[theLock unlock];
// perhaps set the contents of ioData to zero
return err;

- (void) analysisTimer // set with e.g. [NSTimer scheduledTimerWithTimeInterval:...]

{

[theLock lock]; // start accessing intermediary
int32_t numberOfSamples = intermediary.numberOfSamplesCollected;
if (numberOfSamples > 0) {
// copy part of intermediary to the main thread:
GVCemoChannel_feed (channel, numberOfSamples, intermediary.buffer);
intermediary.numberOfSamplesCollected = O; // restart the intermediary buffer
}
// stop accessing intermediary
[theLock unlock];

if (numberOfSamples == 0) return;

GVCemoOutput emotions;
GVCemoChannel_analyze (channel, 220500, 3, & emotiomns);
if (emotions. numberOfValidFrames > 0) {
// here should go some nice visualization of the happiness level
printf ("%f\n", emotions. happyLevel); // just a stand-in for a visualization

Here we see that the locking time is minimized: samples are put into intermediary by the recording callback,
and retrieved from intermediary by the analysis timer. In both cases, the section guarded by the lock does
no more than copying samples from one buffer to another. This is why GVCemo makes a distinction between

14

feed (microseconds) and analyze (milliseconds); see also §3.2.4.

5. Python binding

The information in this chapter supplements the information given in §2.3.

If the language you are programming in is Python, the way to call the C function GVCemo_compute () is via
the Python module gvcemo. This module uses ctypes, a package standardly included in Python that enables
Python apps to call C functions.

The following two pages show the source code of the module gvcemo.
gucemo.py

Copyright (C) 2015 Good Vibrations Company B.V.

verston 2015-09-06

import ctypes

class Output(ctypes.Structure): # In C: GVCemoOutput
fields = [# Fields in C:

("num_valid_frames", ctypes.c_int), # int numberOfValidFrames
("num_frames_lost", ctypes.c_int), # int numberOfFramesLost
("happy_level", ctypes.c_double), # double happyLevel
("relaxed_level", ctypes.c_double), # double relazedLevel
("angry_level", ctypes.c_double), # double angryLevel
("scared_level", ctypes.c_double), # double scaredLevel
("bored_level", ctypes.c_double)] # double boredLevel

_1lib = None

def load(full_or_relative_path_to_GVCemo_library) :
global _1ib

Get the names of the functions in the GVCemo shared object library:
_1lib = ctypes.CDLL(full_or_relative_path_to_GVCemo_library)

The shared library gave us the mnames but not the prototypes,
so we specify all the prototypes here (adapted from GVCemo.h):

H*

_1ib.GVCemo_setWarninglevel.restype = None Return type in C: wvoid
_1ib.GVCemo_setWarninglevel.argtypes = [# Argument in C:
ctypes.c_int]

*

int warninglevel

_1ib.GVCemoChannel _create.restype = ctypes.c_void_p # Return type in C: GVCemoChannel
_1lib.GVCemoChannel_create.argtypes = [# Argument in C:
ctypes.c_double] # double samplingFrequency

_lib.GVCemoChannel_feed.restype = None
_1ib.GVCemoChannel_feed.argtypes = [
ctypes.c_void_p,
ctypes.c_int,

Return type in C: wotd

Arguments in C:
GVCemoChannel channel
int numberOfSamples

15

ctypes.POINTER (ctypes.c_double)] # double samples []
_lib.GVCemoChannel_analyze.restype = None # Return type in C: wvoid
_1lib.GVCemoChannel_analyze.argtypes = [# Arguments in C:
ctypes.c_void_p, # GVCemoChannel channel
ctypes.c_int, # int emotionFormat
ctypes.POINTER (Output)] # GVCemoOutput *output
_1ib.GVCemoChannel_reset.restype = None # Return type in C: wvoid
_1ib.GVCemoChannel _reset.argtypes = [# Argument in C:
ctypes.c_void_p] # GVCemoChannel channel
_1ib.GVCemoChannel _delete.restype = None # Return type in C: wvoid
_lib.GVCemoChannel_delete.argtypes = [# Argument in C:
ctypes.c_void_p] # GVCemoChannel channel
_1ib.GVCemo_hasError.restype = ctypes.c_int # Return type in C: int
_1lib.GVCemo_hasError.argtypes = [] # No arguments in C
_lib.GVCemo_getError.restype = ctypes.c_char_p # Return type in C: const char *
_1ib.GVCemo_getError.argtypes = [] # No arguments in C
_1ib.GVCemo_clearError.restype = None # Return type in C: wvoid
_1ib.GVCemo_clearError.argtypes = [] # No arguments in C

Wrappings:
class Channel:
def __init__(self, sampling_frequency):
self._emo = _lib.GVCemoChannel_create(sampling_frequency)
if _1ib.GVCemo_hasError():
raise RuntimeError(_lib.GVCemo_getError () .decode("UTF-8"))

def feed(self, number_of_samples, samples):
_1ib.GVCemoChannel feed(self._emo, number_of_samples, samples)

def analyze(self, emotion_format, emotions):
_1lib.GVCemoChannel_analyze(self._emo, emotion_format, emotions)

def reset(self):
_1lib.GVCemoChannel _reset(self._emo)

def delete(self):
if not _1lib is None:
_1ib.GVCemoChannel delete(self._emo)

def DoubleArray(size): # For creating C double array arguments.
return (ctypes.c_double * size) ()

The module gvcemo translates all elements of GVCemo.h into Python: the C-struct GVCemoOutput has become

16

the class gvcemo.Output, and the C-function GVCemoChannel_analyze () has become the Python function
gvcemo.Channel.analyze().

You can call all wrapper functions (create () through delete()) with the arguments described in chapter 2.
You can supply almost all arguments in the normal Python manner. The output argument to analyze has
to have been created as an instance of class gvcemo.Output, and the samples argument to feed has to have

been created as a gvcemo.DoubleArray, which works in much the same way as Python’s built-in array of
doubles.

5.1 Example: analyzing a sweep

happy_sweep.py
Computes the development of the "happiness” in a sine sweep.

import gvcemo

try:
emo = None

gvcemo.load("../1ib/1ibGVCemo_mac.so")

sampling_frequency = 44100.0
emo = gvcemo.Channel (sampling_ frequency)

#

Create a 7rising sweep.

#

duration = 20.0 # Seconds

num_samples = int(duration * sampling_ frequency)
samples = gvcemo.DoubleArray(num_samples)

from math import sin, pi

for i in range(O, num_samples):
time = i / sampling_frequency
the local frequency is 100 + time * 10, <.e. it rises from 100 to 300 Hz
samples[i] = sin(2 * pi * (100+timex5) * time)

#
Make space for output.
#
output = gvcemo.QOutput()

#

Compute and Teport the happiness level at multiple points in time. It should rise.
#

print ("Happiness: Valid frames: Frames lost:")

duration_of_slice = 2.0 # Seconds
num_samples_per_slice = int(duration_of_slice * sampling_frequency)
slice = gvcemo.DoubleArray(num_samples_per_slice)
for islice in range(0, 10):
slice[:] = samples[num_samples_per_slice * islice :
num_samples_per_slice * (islice+1)]
emo.feed (num_samples_per_slice, slice)

17

emo.analyze(4, output) # Percentages
print("%.3f" % output.happy_level,
output.num_valid_frames, output.num_frames_lost)

finally:
if not emo is None:
emo.delete() # Clean up

Happiness: Valid frames: Frames lost:
2.463 170 0
9.522 172 0
26.548 172
51.573 173
73.544 172
86.825 172
93.529 172
96.740 173
98.297 172
99.076 172

O O O O O O oo

This output was generated with Python 3.4. The script will also work with Python 2.7, although the output
will be laid out slightly differently (because the print command works differently in both Python versions).

5.2 Example: analyzing the happiness in a WAV file

#!/usr/local/bin/python3
happyWav_mac.py

Purpose:
measures happiness values found in a recording of a human voice

Call syntax:
python happyWav_mac.py full_or_relative_path_to_wav_file.wav

Return value:
first column: a list of happiness percentages between 0 and 100;
second column: the number of frames analyzed to determine each happiness percentage

Requirements:
the path to a dynamically linkable library that contains the GVC emotion detection algorithm;
this path follows here (it can be a relative or a full path name; modify it for your case):

RS I IR T S S S S S S S

import sys
sys.path.append("../../API")

import gvcemo
gvcemo.load("../../1ib/1ibGVCemo_mac.so")

#
Read the WAV file that ts given on the command line.

18

#

import scipy.io.wavfile

(sampling_frequency, samples) = scipy.io.wavfile.read (sys.argv [1])
assert sampling frequency == 44100.0

buffer_size = len(samples)

c_buffer = gvcemo.DoubleArray(buffer_size)

emo = gvcemo.Channel (sampling_ frequency)

#

Compute and report the happiness level at multiple points in time.
#

print ("Happiness: Valid frames: Frames lost:")

for step in range (1, buffer_size // 20000):
output = gvcemo.Output ()

#

Copy the samples, which are Python—floats, to C-doubles.
#

c_buffer [:] = samples [:]

emo.feed(step * 20000, c_buffer)
emo.analyze (4, output)
print("%.3f" % output.happy_level, output.num_valid_frames, output.num_frames_lost)

6. Java binding

There are several ways to call GVCemo from your Java program, one of which is the Java Native Interface.
On request we can describe here the interface file, and how to employ it.

7. R binding

There are several ways to call GVCemo from your R script, among which .C and .Call. On request we can
describe here how this is done (for .C), or describe the interface file (for .Call), and how to employ it.

8. Licencing

You can purchase licences that allow you to use the GVCemo dynamic libraries for research and development
(with e.g. Python or R), and to deploy the statically linked GVCemo object files in an i0S, Windows, MacOS
X, or Linux app that you distribute on an app store or some other way.

For details, pricing, and special arrangements, consult your representative at GVC.

19

	1. Overview
	2. How to incorporate GVCemo in your software project
	2.1. Target platforms
	2.2. Integrating GVCemo files into an iOS, Windows, Mac or Linux app
	2.3. Integrating GVCemo files into a Python project

	3. GVCemo functionality
	3.1. Creating your channel(s)
	3.1.1. Sampling frequency
	3.1.2. A mono recording: one channel
	3.1.3. A stereo recording: two channels
	3.1.4. Multiple simultaneous sources of recordings
	3.1.5. The result
	3.1.6. Restrictions on the sampling frequency
	3.1.7. Error messages

	3.2. Feeding samples to a channel
	3.2.1. Samples
	3.2.2. The number of samples to feed
	3.2.3. The result
	3.2.4. Error messages

	3.3. Getting emotion levels from a channel
	3.3.1. The emotion format
	3.3.2. Are we measuring chances or degrees?
	3.3.3. Valid frames
	3.3.4. Lost frames

	3.4. Resetting a channel
	3.5. Deleting all channels

	4. Example code in C
	4.1. A full example in C: the happy sweep
	4.2. Batch mode: one channel
	4.3. Batch mode: two channels
	4.4. Real-time mode

	5. Python binding
	5.1 Example: analyzing a sweep
	5.2 Example: analyzing the happiness in a WAV file

	6. Java binding
	7. R binding
	8. Licencing

